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Abstract 

Heart rate data are collected often in human factors studies. Advances in open hardware platforms and off-the-

shelf photoplethysmogram (PPG) sensors allow the non-intrusive collection of heart rate data at very low cost. 

However, the signal is not trivial to analyse, since the morphology of PPG waveforms differs from 

electrocardiogram (ECG) waveforms and shows different noise patterns. PPG is often preferable because it can 

be collected less intrusively. However, few validated open source available algorithms exist that handle PPG 

data well, as most of these algorithms are specifically designed for ECG data. We have developed a novel 

algorithm specifically for PPG data collected in noisy field- or simulator-based settings. The main aim of this 

paper is to present the validation of a novel algorithm on a PPG dataset collected in a recent driving simulator 

experiment. The dataset was manually annotated, and performance of the algorithm compared to two other 

popular open source available algorithms. We show that the algorithm performs well and displays superior 

performance on the PPG dataset. Implications and further steps are discussed. 

 

1. Introduction 

Physiological data is collected in many human factors studies. Among the physiological data, heart rate data is 

usually included as it is sensitive to for example changes in (driver) workload (Mehler et al., 2010), stress (Healey 

et al., 2005), and general driver state such as drowsiness (Danisman et al., 2010). However, capturing heart rate 

in the often noisy conditions of either a driving simulator or an on-road field test, and subsequently analysing the 

complex signals, can be difficult or costly (Brookhuis et al., 2010). Low-cost commercial devices are available, but 

these are generally designed for sporting contexts and not specifically for scientific research. Furthermore, the 

proprietary nature of the firmware and software used in these devices creates problems with data reliability and 

reproducibility of results. 

One potential solution lies in the recent advances in wearable technology and open hardware platforms, such 

as Arduino1 and Raspberry Pi2. The advancement in available open hardware and software provides researchers 

with validated, transparent and open source data collection and processing tools. There is, however, a lack of 

open source available heart rate analysis algorithms that are validated, easy to use and able to handle noisy data 

from low-cost sensors. Implementations of heart rate analysis algorithms described in research papers are often 

not available, poorly documented, or require substantial technical expertise to implement properly. 

Since we found the open source available heart rate analysis software unsuited for the noisy field- and 

simulator-based PPG data we were collecting using low-cost sensors, our aim was to develop a novel algorithm 

                                                   

1 See http://www.arduino.cc 

2 See http://www.raspberrypi.org 

http://www.arduino.cc/
http://www.raspberrypi.org/
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that (i) functions better on this type of data, and (ii) provides an easy-to-use way of analysing heart rate data 

collected in the field or in simulators. The main aim of this paper is to describe the validation of the developed 

algorithm on a noisy dataset collected in a driving simulator. It was designed to be resistant to typical noise 

patterns (e.g. motion artefacts, momentary signal loss) of participants engaged in other tasks (driving simulator, 

on-road car experiment, bike experiment), to be capable of handling signals from low-cost off-the-shelf sensors, 

and to be user friendly. It has been designed to run on both wearable devices (Arduino, Raspberry Pi), as well as 

on Desktop computers. For a technical overview of the algorithm, its development and its availability, please see 

(van Gent et al., 2018).  

In the rest of the paper, we first describe basic properties of the heart rate signal as they relate to data 

collection and analysis. This is followed by a discussion of our methods, results and concluding remarks. 

1.1 Measuring Heart Rate in Naturalistic or Simulated Settings 

There are two major approaches to measuring heart rate in (naturalistic) on-road or in simulated settings, which 

mainly differ in the physiological properties they measure. 

Figure 1 – The differences in morphology of the ECG wave (a) and PPG wave (b), and the time lag ‘x’ between 

both waves (c). The ECG (a) wave consists of most notably the Q-R-S complex (I-III). The P (IV) and T (V) waves 

are also marked in the plot. 

Electrocardiogram recordings (ECG) are collected by placing electrodes on the chest near the heart. These 

electrodes measure the electrical activation of the heart during each cardiac cycle. The defining feature in the 

ECG signal is the QRS complex (Figure 1a I-III). Advantages of the ECG signal are that it directly measures the 

heart’s electrical activation and that it presents a strong QRS complex presence in the resulting signal (Figure 1 

a). A common source of noise in ECG signals are motion artefacts resulting from sensor displacement due to 

participant movement. These tend to fall in the same frequency range as the QRS-complexes, which can make it 

difficult to filter them without deforming the QRS complex (Kirst et al., 2011). In traffic related studies, ECG 

recordings have been used in for example (Brouwer et al., 2015; Fallahi et al., 2016; Miyaji et al., 2008). 

Photoplethysmogram (PPG) recordings offer a less invasive method of assessing the cardiac cycle. These 

devices employ an optical sensor to measure the discoloration of the skin as blood perfuses through the arteries 

and capillaries with each heartbeat. PPG is typically measured at the fingertip or through wrist bracelets. The PPG 
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signal consists of a systolic peak (Figure 1b-I), a dicrotic notch (1b-II), and a secondary peak called a diastolic peak 

(1b-III). The secondary peak may be absent in some recordings or of very low amplitude. Advantages of the PPG 

method are that it is low cost, easy to set up, and non-invasive (Elgendi, 2012; Millasseau et al., 2000). Ways of 

obtaining the PPG signal contactless through cameras have been proposed, further reducing intrusiveness (Sun 

et al., 2012). However, PPG tends to display more amplitude variation over short time-intervals (Figure 1c), more 

variation in waveform morphology, as well as contain more noise from various sources when compared to ECG 

measurements. This makes analysis more difficult. In the traffic domain PPG sensors have been used by for 

example (Jarvis et al., 2011; van Gent et al., in press; Zhai et al., 2006). 

1.2 Analysing Heart Rate Data 

The heart signal is often split into heart rate (HR) and heart rate variability (HRV) measures. These measures are 

calculated using the distance between the detected heart beats (the RR-intervals, named because in the ECG, 

the largest amplitude peak is called the R-wave). The heart beats are represented by the peaks in both signals 

(Figure 1a, b). Despite the different underlying physiological constructs that are measured, a high correlation 

(median 0.97) between RR-intervals extracted from ECG and PPG signals has been reported (Selvaraj et al., 

2008). This makes the PPG a valid alternative for human factors studies that require non-intrusive heart rate 

measurements, given that validated analysis algorithms exist.  

 

2. Methods 

The algorithm used in this study was validated using a dataset collected with a PPG sensor in a driving simulator 

experiment (van Gent et al., in press). The dataset contained approximately 20.7 hours of PPG recordings. 

The data were split into segments of one minute each. The R-peak positions in the segments were annotated 

manually to serve as a basis of comparison. We compared the algorithm performance to the annotated data on 

four variables: detected peak position, mean of the RR-intervals for the analysed segment, beats per minute 

computed by the algorithm, and a common heart rate variability (HRV) measure: the standard deviation of 

successive differences (SDSD). To quantify the accuracy of the algorithms predictions, we used the Root Mean 

Squared Error (RMSE), defined as: 

Eq.1  𝑅𝑀𝑆𝐸 =  √
∑(𝑦− ŷ)2

𝑛
 

Where y is the ground truth value, ŷ is the value predicted by the algorithm, and n the number of comparisons. 

Figure 2 – Figure displaying the possible errors. These are: a.) ‘incorrectly rejected’, b.) ‘missed’, c.) ‘incorrectly accepted’. Peaks marked 

on a correct QRS complex but not on its R-peak maximum, are also counted as ‘incorrectly accepted’. This type of error is shown in d.). 

Other possible mistakes are marking an R-peak at a non-maximum position (e), or incorrectly marking a diastolic peak (f). 
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Additionally, the results of the one-minute segments were plotted and three types of errors annotated (shown 

in Figure 2): ‘Incorrectly rejected’ means a correct R-peak has been marked as low confidence (Figure 2a). ‘Missed’ 

indicates a peak is present but not marked (Figure 2b). ‘Incorrectly accepted’ indicates a peak is marked where 

no R-peak is considered present by the human annotator (Figure 2c). Figure 2d shows another example classified 

as ‘incorrectly accepted’: cases where an R-peak was marked at a non-maximum position. The HRV measures are 

sensitive to outliers: marking an R-peak on an anomalous position affects these measures since they rely on the 

intervals computed between R-peak positions. Marking a peak at an incorrect time position creates a deviation 

in the interval length. The algorithm has been designed to minimise the ‘incorrectly accepted’ error type.  

 

3. Results 

The used dataset represents 20.7 hours of PPG recordings split into 1,240 one-minute segments. The signals 

were recorded at the tip of the finger as participants were driving in a driving simulator. The sensor placement 

did not interfere with driving. Participants were instructed to drive as they normally would.  

The data set was fully annotated. A total of 92,304 peaks were detected by the algorithm. Of these, 88,830 

(96%) were correctly accepted, and 2,808 (3.04%) were correctly rejected automatically. This indicates that for 

99.04% of all detections, the algorithm correctly labelled R-peaks. 666 (0.72%) peaks were incorrectly rejected. 

229 (0.25%) R-peaks were incorrectly accepted. A total of 304 R-peaks were annotated as missed. Most of the 

incorrectly accepted peaks occur either because an R-peak was marked not at the maximum value (Figure 2, e), 

or because a diastolic (secondary) peak is marked as an R-peak (Figure 2, f). Future updates of the algorithm aim 

to further reduce these error rates. Overall, the error rates were low. 

We compared the performance of our algorithm with an implementation of the Pan-Tompkins QRS algorithm 

(Pan et al., 1985), as well as with an open source algorithm HRVAS ECGViewer3. The latter was chosen because it 

is one of the first hits when searching for open source heart rate analysis software on Google, and it shows high 

usage statistics. It is designed for Matlab, but a standalone version is also available. The Pan Tompkins algorithm 

is a computationally efficient algorithm widely used in ECG analysis. 

The comparison results are displayed in Table 1. They indicate that our algorithm significantly outperforms 

the other two open source algorithms on PPG data. The RMSE of peak position is 1.64035 (milliseconds), indicates 

that the standard deviation of the errors between the actual peaks and the predicted peaks was low compared 

to the other two algorithms. The resulting RR-intervals were also more accurate compared to the other 

algorithms, likely due to less missed and less incorrectly accepted beats. Differences in BPM error are not very 

large. Since the BPM uses the mean of all RR-intervals in a segment, it is relatively robust to a few incorrectly 

placed peak positions. However, effects on heart rate variability measures are large. The Standard Deviation of 

Successive Differences (SDSD), which is a less outlier-resistant measure for how the intervals between the heart 

beats vary over time, shows a large error in the other two algorithms. This shows the importance of correctly 

identifying R-peak positions as well as identifying incorrectly labelled peaks, as deviations risk introducing 

substantial error to the output measures. 

 

                                                   

3 See: https://github.com/jramshur/ECG_Viewer 

https://github.com/jramshur/ECG_Viewer
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Table 1 – Comparison of algorithm performance on PPG dataset (N=1,240) 

 RMSE peak location RMSE RR-intervals RMSE BPM RMSE SDSD 

Developed algorithm 1.64 38.87 4.18 217.41 

Pan-Tompkins 16.52 171.32 4.76 364.74 

HRVAS ECGViewer 16.43 272.97 6.71 1067.82 

 

4. Discussion and Conclusion 

In this paper we have described the validation of a novel, robust heart rate analysis algorithm developed for use 

in human factors studies. The motivation to develop such an algorithm was that what is available is often highly 

technical or expensive to implement, and because low-cost commercial measurement devices offer no suitable 

solution for scientific purposes.  

We have evaluated the algorithm’s performance on a manually annotated PPG data set and compared the 

performance to two popular available algorithms. Results showed superior performance on this type of data. It 

must be noted that these results reflect lower performance of the algorithms only on this specific type of data: 

PPG data collected in the field using low-cost sensors has quite different signal and noise properties compared to 

ECG data, for which many available open source algorithms are designed. The evaluation does show, however, 

that for many human factors studies our algorithm will outperform the other available open-source methods, 

especially when less intrusive measurements are desired or when low-cost sensors are used. 

By offering human factors researchers an openly available and validated toolkit for heart rate analysis, we aim 

to increase their research possibilities, as well as the reliability and reproducibility of results obtained. Future 

steps include increasing the accuracy and functionality of the algorithm further. 
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